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Summary. The goal of a phase II trial in oncology is to evaluate the efficacy of a new therapy. The dose
investigated in a phase II trial is usually an estimate of a maximum-tolerated dose obtained in a preceding
phase I trial. Because this estimate is imprecise, stopping rules for toxicity are used in many phase II trials.
We give recommendations on how to construct stopping rules to monitor toxicity continuously. A table is
provided from which Pocock stopping boundaries can be easily obtained for a range of toxicity rates and
sample sizes. Estimation of the probability of toxicity and response is also discussed.
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1. Introduction

The primary purpose of a phase I clinical trial is to find a
dose with the probability of toxicity equal to the maximum-
tolerated level (often 0.2 or 0.25), called the “maximum-
tolerated dose” (MTD). The response rate of the dose es-
tablished in a phase I trial is evaluated in subsequent phase
II trials. Because phase I trials use small sample sizes, the es-
timate of the MTD is imprecise. As a result, the dose chosen
for the phase II trial can have a toxicity rate that is much
higher than the maximum-tolerated level. To avoid an exces-
sive number of toxicities, a stopping rule for toxicity is often
implemented in the phase II trials. One example is a study of
mitoxantrone or floxuridine in patients with minimal residual
ovarian cancer after the second-look laparotomy conducted
by the Southwest Oncology Group (Muggia et al., 1996). The
study plan was to assign 37 patients to each arm, although
accrual would be stopped in the arm if 13 or more of the first
20 patients on that arm experienced toxicity. Toxicity was
defined as not being able to tolerate at least two courses of
treatment. The stopping rule for toxicity uses the fact that
the probability that 13 or more of 20 will not tolerate a treat-
ment is less than 5% if the true proportion is 0.4 (Liu, 2001).
Bryant and Day (1995) proposed a two-stage design, where
the trial is terminated after the first stage if the observed
toxicity rate is too high or the response rate too low. A sim-
ilar strategy was adopted by Conaway and Petroni (1995),
who considered two- and three-stage designs. However, when
toxicity events are severe, continuous monitoring of them is
preferred. That was the case for the Lineberger Comprehen-
sive Cancer Center (LCCC) 9818 trial of taxol plus herceptin
in patients with metastatic breast cancer, designed by one of
us (MJS). Cardiac toxicity was the primary concern. It was

decided that the cardiac toxicity should be monitored contin-
uously throughout the trial and the trial stopped as soon as
there is evidence that the toxicity rate is much higher than
that of historic controls. The total planned sample size for
the trial was 60. The stopping boundary designed for the trial
yielded a probability of stopping the trial of 0.05 if the true
rate of the cardiac toxicity was 0.09.

In this article, we investigate the Pocock and O’Brien–
Fleming boundaries as possible stopping boundaries for tox-
icity. It is known that maximum likelihood estimates may
be biased when a sequential procedure is used (Whitehead,
1986). We evaluate the bias of the maximum likelihood esti-
mates of toxicity and response rates and suggest alternative
ways of estimation. Section 2 addresses computation of the
boundary. Sections 3 and 4 address the estimation of toxicity
and response in trials where stopping for toxicity is possible.
In Section 5, we draw conclusions.

2. Designing a Stopping Boundary for Toxicity

Let K be the sample size planned for a single-stage phase II
study. Let θ denote the true toxicity rate of the dose chosen for
the study. Our goal is to construct a stopping boundary based
on toxicity such that the probability of early stopping is at
most φ if the toxicity rate is equal to θ0. The values of θ0 and
φ are elicited from the principal investigator of the trial. One
possible choice of θ0 is the maximum-tolerated toxicity rate,
which is the probability of toxicity of the true MTD. Because
we do not want the probability of early stopping to be high
when the toxicity rate is equal to the maximum-tolerated tox-
icity rate, it is reasonable to choose φ = 0.05. To monitor tox-
icity continuously, we need to specify the stopping boundary
for each k, k = 1, . . . ,K. We will investigate the Pocock (1977)
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Table 1

Pocock and O’Brien–Fleming boundaries for K = 20 that yield probability of stopping of about φ = 0.05
when the true toxicity rate is θ0 = 0.2

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pocock boundary
bk – – 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9

O’Brien–Fleming boundary
bk – – – – – 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8

and O’Brien–Fleming (1979) boundaries with K stages as pos-
sible stopping boundaries for toxicity. Note that because the
maximum sample size is fixed, use of open-ended tests, such
as the sequential probability ratio test (SPRT), is not appro-
priate. A boundary is a sequence of integers (b1, . . . , bK ). If the
number of toxicities in the first k patients is equal to or higher
than bk , the trial is stopped and we refer to this event as early
stopping (even though it may occur after all K patients have
been treated, if the number of toxicities is bK ). In order to find
a boundary, a set of pointwise probabilities α1, . . . ,αK are cho-
sen, and bk is then computed as the smallest integer such that
Pr{Y ≥ bk} ≤ αk, where Y denotes a binomial variate with
parameters k and θ0. The choice of the αk ’s distinguishes the
different types of boundaries. A Pocock boundary is obtained
by setting α1 = · · ·= αK = α, where α is such that if θ = θ0

the probability of early stopping is as close to φ as possible,
but not exceeding φ. The solution to this problem, then, cen-
ters around identification of the α’s. For the Pocock bound-
ary, a possible initial estimate of α is α = Pr{Z > CP (K,φ)},
where CP (K, φ) are the tabulated values for the normally
distributed outcomes (Jennison and Turnbull, 2000, p. 26),
and Z denotes a standard normal variate. For the O’Brien–
Fleming boundary, an initial estimate is obtained by choos-
ing αk = Pr{Z > CB(K,φ)(K/k)1/2}, where CB (K, φ) are the
tabulated values (Jennison and Turnbull, 2000, p. 29). The
discreteness of the binomial distribution requires fine-tuning
of these boundaries to bring the overall probability of early
stopping as close to φ as possible. Jennison and Turnbull
(2000, p. 237) suggest that investigators “start with a proce-
dure based on the normal approximation and find the precise
error rates . . . by exact calculation.” Although other bound-
aries and general spending-function arguments (Jennison and
Turnbull, 2000) can be adapted in a similar fashion, we limit
our discussion to these two types of boundaries.

toxicity rate
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Figure 1. Probability of early stopping, expected sample size, and expected number of toxicities for different toxicity rates.
Results for the Pocock boundary are shown by the solid line, O’Brien–Fleming boundary by the dashed line. Expected number
of toxicities in a trial with no stopping boundary is shown by the dotted line.

Consider an example with K = 20, θ0 = 0.2, and φ = 0.05.
The two stopping boundaries are displayed in Table 1. The
Pocock boundary is constructed with α = 0.01959 that corre-
sponds to CP (K, φ) = 2.054. The value of CP (K, φ) for K =
20 and the error rate of 0.05 given by Jennison and Turnbull
(2000, p. 26) is 2.672. The probability of early stopping is
φ = 0.0484. We used CB (K, φ) = 1.854 for the O’Brien–
Fleming boundary that gives φ = 0.0481. Note that because
of discreteness of the binomial distribution, other choices of
CP (K, φ) and CB (K, φ) from a small interval around the
values given above will produce the same boundaries.

Figure 1 displays the probability of early stopping plot-
ted against toxicity rate for both the Pocock and O’Brien–
Fleming boundaries. By construction, the two curves coincide
at approximately θ = 0.2 and φ = 0.05. The O’Brien–Fleming
boundary yields slightly higher probability of early stopping
for higher toxicity rates. However, the average sample size in
the trial with high probability of toxicity is larger for the
O’Brien–Fleming method compared to the Pocock bound-
ary (Figure 1). This is because the Pocock boundary is at
least as likely to stop the trial for every given number of pa-
tients except k = 19 or 20 (Table 1). The average number
of toxicities in the trial is higher for the O’Brien–Fleming
boundary (Figure 1) as well. It is also interesting to note that
for the Pocock boundary, we expect to see more toxicities
if θ = 0.4 than if θ = 0.5. By construction, the αk values
are higher for the Pocock boundary than for the O’Brien–
Fleming boundary at the beginning of the trial, allowing ear-
lier stopping if the toxicity rate is high. Because we believe
that it is important to stop the trial as early as possible if
the toxicity rate is too high, we typically prefer the Pocock
boundary.

Determination of α involves trial-and-error calculations
from the values in the Jennison and Turnbull (2000) tables, as
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Table 2

Values of α for constructing the Pocock boundaries that yield
probability of stopping of about φ = 0.05 when the true

toxicity rate is θ0 and the planned sample size is equal to K

θ0 = 0.1 θ0 = 0.2 θ0 = 0.3

K α K α K α

15–16 0.02685 15, 18–20 0.01959 15–17 0.02530
17–20 0.02566 16–17 0.02666 18–21 0.02162
21–22 0.02389 21–24 0.01941 22–24 0.02097
23–24 0.02238 25–26 0.01806 25–26 0.01823
25–26 0.01853 27 0.01734 27–29 0.01747
27 0.01822 28–30 0.01696 30–31 0.01694
28–31 0.01791 31 0.01629 32–33 0.01525
32 0.01701 32–34 0.01672 34–36 0.01426
33–37 0.01585 35–36 0.01629 37–40 0.01384
38–39, 44 0.01467 37–40 0.01487 41 0.01308
40–43 0.01550 41 0.01442 42–45 0.01215
45 0.01445 42, 44 0.01301 46 0.01166
46, 48–49 0.01403 43 0.01419 47–48 0.01133
47 0.01411 45–47 0.01272 49, 51 0.01130
50–51 0.01315 48 0.01263 50, 52–54 0.01116
52 0.01280 49–51 0.01167 55–56 0.01094
53–57 0.01273 52 0.01166 57–60 0.01073
58–60 0.01258 53–56 0.01161

57–59 0.01101
60 0.01098

noted above. Table 2 gives α values that can be used to con-
struct the Pocock boundary for φ = 0.05, θ0 = 0.1, 0.2, and
0.3, and a wide range of values of K. For example, if K = 25,
the Pocock boundary with α = 0.01806 yields a probability
of stopping of almost but not exceeding 0.05 when the true
probability of toxicity is 0.2. From an α value in Table 2,
boundary bk can be computed as the smallest integer such
that Pr{Y ≥ bk} ≤ α, where Y is binomial(k, θ0). The values
of α can also be used as starting values when constructing
boundaries with different φ, θ0, and K. For example, we used
the value of α = 0.01258 corresponding to K = 60 and θ0 =
0.1 as the starting value to construct the Pocock boundary
for the taxol plus herceptin trial mentioned in Section 1. The
Pocock boundary for this trial with K = 60 and θ0 = 0.09
is presented in Table 3. The value α = 0.01100 yielded φ =
0.0494 (the original boundary in the LCCC 9818 trial was not
a Pocock boundary, although it was similar in spirit).

3. Estimation of the Probability of Toxicity

for Trials with Early Stopping for Toxicity

3.1 Estimation of the Toxicity Rate

The maximum likelihood estimator (MLE) in a trial where
a sequential design is used is known to be biased. Girshick,

Table 3

Pocock boundary for K = 60 that yields probability of stopping φ = 0.05 when the true toxicity rate is θ0 = 0.09. Only points
where stopping is possible are listed.

k 2 4 5 6 8 9 10 12 13 14 15 16 18 19 20 21 22 24 25 26 27 28 29 31 32 33

bk 2 3 3 3 4 4 4 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 7 8 8 8

k 34 35 37 38 39 40 41 42 44 45 46 47 48 49 50 52 53 54 55 56 57 59 60

bk 8 8 9 9 9 9 9 9 10 10 10 10 10 10 10 11 11 11 11 11 11 12 12

Mosteller, and Savege (1946) developed unbiased estima-
tors for binomial proportions under various sampling plans.
Whitehead (1986) developed bias correction procedures based
on the asymptotic normality of MLEs. Jung and Kim (2004)
derived the unique uniformly minimum variance unbiased es-
timator of a proportion in a two-stage phase II design and
compared it to the MLE in terms of bias and mean squared
error. In this section, we develop an alternative to MLEs that
can be used in trials where there is a possibility of early stop-
ping for toxicity.

The outcome of a sequential trial is a pair, (Y, N), the num-
bers of toxicities and patients, respectively. For the stopping
rules discussed here, the likelihood is proportional to a bino-
mial likelihood (Lindsey, 1997) and the MLE is θ̂MLE = Y/N .
If the sample space of (Y, N) contains J points (with positive
probability), then an estimator of θ can be expressed as a J ×
1 vector containing values of the estimator at each point in
the sample space. Let β denote such a vector, and θ̂β be the

associated estimator, θ̂β = βj if the observed (Y, N) is the jth
point in the sample space. The distribution of (Y, N), and
hence θ̂β , is completely determined by θ. For a given β, define
the bias and the variance by

B(θ, β) = E[θ̂β − θ],

V (θ, β) = var(θ̂β),

and define a penalty function

Q(θ, β, λ) = λV (θ, β) + (1 − λ)B2(θ, β),

where λ ∈ (0, 1) is an adjustable parameter chosen to achieve
a balance between the bias and variability of θ̂β . The function
Q(θ , β , λ) depends upon the unknown θ. We propose placing
a prior g(θ) on θ and minimizing the expected penalty

R(β, λ) =

∫ b

a

Q(θ, β, λ)g(θ) dθ = Eθ[Q(θ, β, λ)].

The interval [a, b] represents a range of interest or a plausible
range for θ, where the prior g(θ) is away from zero, for exam-
ple, [a, b] = [0, 1]. The function Q(θ, β, λ) is the risk function,
and R(β, λ) is the Bayes’ risk with respect to the prior g(θ).
The estimator is found by minimizing R(β, λ) with respect
to β subject to βj ∈ [0, 1] for all j. Closed-form expressions
are not possible, so we adopt a numerical approach. First, we
approximate g(θ) by a discrete probability distribution that
puts mass gi > 0 at θ = xi , i = 1, . . . ,m,

∑m

i=1
gi = 1. Here, x1

< · · ·<xm are points in [a, b]. Then, R(β, λ) is approximated
by the summation

R(β, λ) ≈ R̃(β, λ) =

m
∑

i=1

giQ(xi, β, λ). (1)
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The choice of m is not critical. We report some comparisons
in Section 3.2. The mean and variance can be expressed in
matrix terms as follows. Let the J-vector fi contain the prob-
ability masses for the J points in the sample space evaluated
at θ = xi . It follows that, at θ = xi , the mean and variance of
θ̂β are

µi =

J
∑

j=1

fijβj = fT
i β,

V (xi, β) =

J
∑

j=1

fijβ
2
j − µ2

i = βTDiβ

−
(

fT
i β

)2
= βT

{

Di − fif
T
i

}

β,

where Di is a J × J diagonal matrix with fi on the diagonal.
It follows that

Q(xi, β, λ) = λV (xi, β) + (1 − λ)(µi − xi)
2

= βT
{

λDi + (1 − 2λ)fif
T
i

}

β

− 2(1 − λ)xif
T
i β + (1 − λ)x2

i .

Define F to be the m × J matrix with ith row fT
i , and let x =

(x1, . . . , xm)T. Then, we have

R̃(β, λ) =

m
∑

i=1

giQ(xi, β, λ)

=

m
∑

i=1

giβ
T
{

λDi + (1 − 2λ)fif
T
i

}

β

− 2(1 − λ)

m
∑

i=1

gixif
T
i β + (1 − λ)

m
∑

i=1

gix
2
i ,

= βT

{

λ

m
∑

i=1

giDi + (1 − 2λ)

m
∑

i=1

gifif
T
i

}

β

− 2(1 − λ)

m
∑

i=1

gixif
T
i β + (1 − λ)

m
∑

i=1

gix
2
i ,

= βT{λD + (1 − 2λ)FTGF}β

− 2(1 − λ)xTGFβ + (1 − λ)xTGx.
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Figure 2. Bias, standard deviation (SD), and RMSE for MLE (solid line), β(0.25) (dotted line), and β(0.50) (dot–dash
line).

Here, G is a diagonal matrix with diagonal elements
(g1, . . . , gJ ), and matrix D is defined as D =

∑m

i=1
giDi. The

estimator β is the minimizer of

βT{λD + (1 − 2λ)FTGF}β − 2(1 − λ)xTGFβ

subject to 0 ≤ β ≤ 1 component-wise. Note that the term
(1 − λ)xTGx is dropped because it does not involve β. Be-
cause λ D + (1 − 2λ)FTGF is strictly positive definite (see the
proof in the Appendix), the minimization problem above is a
convex quadratic program and the minimizer can be found us-
ing standard quadratic programming methods (for example,
Fletcher, 1987, Chapter 10). Note that the only approxima-
tion in the algorithm above involves replacing the integral
in R(β, λ) by the summation in R̃(β, λ). The distributions
fi are computed exactly for small K. For larger K, fi can be
approximated by simulating a large number of sequences.

3.2 Prior Elicitation and Examples

If there is no information on θ, the prior g(θ) can be taken
as uniform on [0, 1]. Often, the estimate of the MTD ob-
tained in the phase I trial is chosen as the dose for a sub-
sequent phase II trial. Hence, data from the phase I trial
can be used to construct the prior. Then, a beta prior of the
form g(θ) ∝ {θY

0
(1 − θ)K

0−Y 0
}w can be used, where Y 0 is the

number of toxic observations, K 0 − Y 0 is the number of non-
toxic observations in the phase I trial, and the weight w, 0 <
w ≤ 1, reflects the influence of the prior on the current study
(Legedza and Ibrahim, 2001). For example, if we have data
from six patients with one toxic and five nontoxic outcomes
from a phase I trial where a similar patient population was
used, we set g(θ) ∝ θ(1 − θ)5.

The above approach was applied using the Pocock bound-
ary from Table 1. Figure 2 shows the bias, standard deviation,
and root mean squared error (RMSE) for the MLE, and esti-
mators β corresponding to the uniform prior on [0, 1] and λ =
0.25, denoted β(0.25), and λ = 0.5, denoted β(0.5). The value
λ = 0.5 defines squared error loss, and the corresponding esti-
mator is the posterior mean. The three estimators have com-
parable bias, but the Bayes’ estimates have smaller variance.
The RMSE values for both β(0.25) and β(0.5) are smaller
than for the MLE for the toxicity rates above 0.1.

Table 4 displays the MLE of θ (computed as Y/N), the
estimates β(0.25), and β(0.50) for uniform prior on [0, 1],
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Table 4

A phase II trial with 20 patients where the Pocock boundary is used to monitor toxicity. Here, Y is the
number of toxicities and N is the number of patients before the trial is terminated. The table presents the
probability of obtaining the outcome (Y, N) given θ, pθ, the MLE of θ calculated as Y/N, the estimates
β(0.25), and β(0.50) for the uniform prior, and estimates β(0.25), and β(0.50) for the beta prior.

Uniform prior Beta prior

j Y N p0.2 p0.5 MLE β(0.25) β(0.50) β(0.25) β(0.50)

1 3 3 0.01 0.12 1.00 0.80 0.88 0.55 0.45
2 4 5 0.00 0.09 0.80 0.71 0.74 0.55 0.46
3 4 6 0.01 0.14 0.67 0.63 0.61 0.49 0.43
4 5 8 0.00 0.07 0.63 0.60 0.57 0.51 0.44
5 5 9 0.01 0.10 0.56 0.55 0.50 0.46 0.41
6 6 11 0.00 0.05 0.55 0.54 0.49 0.47 0.42
7 6 12 0.01 0.07 0.50 0.50 0.45 0.44 0.40
8 7 14 0.00 0.04 0.50 0.50 0.44 0.45 0.40
9 7 15 0.00 0.05 0.47 0.47 0.41 0.42 0.39
10 8 17 0.00 0.03 0.47 0.47 0.41 0.43 0.40
11 8 18 0.00 0.04 0.44 0.44 0.39 0.41 0.38
12 9 20 0.00 0.02 0.45 0.45 0.39 0.42 0.39
13 0 20 0.01 0.00 0.00 0.05 0.02 0.03 0.07
14 1 20 0.06 0.00 0.05 0.09 0.07 0.07 0.11
15 2 20 0.14 0.00 0.10 0.14 0.11 0.13 0.14
16 3 20 0.21 0.00 0.15 0.18 0.16 0.16 0.18
17 4 20 0.22 0.00 0.20 0.23 0.20 0.20 0.21
18 5 20 0.17 0.01 0.25 0.28 0.24 0.24 0.25
19 6 20 0.10 0.03 0.30 0.32 0.28 0.28 0.29
20 7 20 0.04 0.06 0.35 0.36 0.31 0.33 0.32
21 8 20 0.01 0.05 0.40 0.40 0.35 0.37 0.36

and estimates β(0.25), and β(0.50) for the beta prior g(θ) ∝
θ(1 − θ)5. The Bayesian estimates are less extreme than the
MLE. The estimates obtained using a beta prior are closer to
its prior mean of 0.25 compared to corresponding estimates
from a uniform prior. The conclusions regarding the bias of
the MLE of toxicity are similar for the boundary with K =
60 and θ0 = 0.09 (Table 3) compared to the boundary with
K = 20 and θ0 = 0.2 (Table 1). The estimates reported in
Table 4 were obtained using m = 500 in (1). For comparison,
the maximum change in β was 0.004 with m = 50; 0.002 with
m = 100; and 0.0005 with m = 250.

4. Estimation of the Probability of Response

In this section, we address the concern that when using a
toxicity-based sequential stopping rule in phase II trials, the
observed proportion of responses (the standard estimator of
the probability of a therapeutic response to a drug) may be bi-
ased. To address this issue, we specify the joint distribution of
toxicity and response. For the ith patient, let the random vari-
ables Yi and Xi , respectively, indicate toxicity and response,
both coded as 1 = yes and 0 = no. Further, let π = E[Xi] =

P{Xi = 1}, ρ = corr(Xi, Yi), and X =
∑N

1
Xi be the number

of responses after N patients. It then follows that

E[Xi |Yi] = π + ρ

{

π(1 − π)

θ(1 − θ)

}1/2

(Yi − θ),

E

[

X

N
− π | (Y,N)

]

= ρ

{

π(1 − π)

θ(1 − θ)

}1/2 (

Y

N
− θ

)

,

and, by unconditioning, the bias of X/N is

E

[

X

N
− π

]

= ρ

{

π(1 − π)

θ(1 − θ)

}1/2

E

[

Y

N
− θ

]

. (2)

A similar formula was derived by Whitehead (1986) based
upon the asymptotic normality of MLEs. However, in the cur-
rent context, formula (2) is exact for any sample size. To max-
imize (2) with respect to ρ we note that for fixed θ and π, the
upper bound on ρ is min (r, 1/r), where r = {θ/(1 − θ)}1/2/
{π/(1 − π)}1/2 (Qaqish, 2003). Under restriction π > θ and
ρ > 0, we obtain the bound

E[X/N − π]

E[Y/N − θ]
≤

1 − π

1 − θ
.

This has the intuitive interpretation that the bias in X/N
relative to that in Y/N is smaller for treatments that are
more effective and less toxic. The factor ρ{π(1 − π)}1/2/
{θ(1 − θ)}1/2 in (2) has a maximum of 1, attained at π =
θ and ρ = 1; and a minimum of –1, attained at π = 1 − θ
and ρ = −1. These are not realistic scenarios. Nevertheless,
they indicate that E[X/N − π] ≤ E[Y /N − θ]. In essence,
the bias in X/N cannot exceed the bias in Y/N.

Perhaps more important is the bias in X/N if a study has
reached the maximum planned sample size, N = K, as has oc-
curred in the taxol plus herceptin trial mentioned in Section 1.
For the boundary shown in Table 3, and assuming θ = 0.1, we
obtain E[Y /N − θ] = 0.01940, and conditionally E[Y /N −
θ |N = K] = −0.00487. Assuming π = 0.3 and ρ = 0.2 and
applying the bias formulas given above yields E[X/N − π] =
0.00593 and conditionally E[X/N − π |N = K] = −0.00149.
Thus, if the trial runs to the end, the bias introduced by the
toxicity-based stopping rule is practically negligible. The bias
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of the MLE increases with θ (Figure 2), but for larger values of
θ the drug would be considered too toxic and the estimation of
π would not be a major concern. To give investigators an idea
about the potential magnitude of bias, we recommend doing
bias calculations as described above for a range of parame-
ter values deemed reasonable or appropriate for a particular
trial.

5. Conclusions

This article has addressed the formal incorporation of stop-
ping rules for toxicity in phase II trials. It was shown that the
estimation of toxicity after using a sequential boundary is fea-
sible. The proposed estimator is obtained using a combination
of exact calculations and quadratic programming methods.
The effect of incorporating the boundary on the estimation
of the probability of response is minimal unless toxicity and
response are highly correlated. When the toxicity rate is low,
the trial runs to the end with high probability, and the bias
introduced in the estimation of the response probability is
generally low. On the other hand, if the toxicity rate is high,
the trial stops early with high probability and in those cases
unbiased estimation of the response probability should not be
a major concern. In this article, we only considered a single-
stage phase II trial. The methods for constructing estimators
described in this article can be extended to trials where there
is a need to continuously monitor toxicity and a multistage
design is used to monitor response. Software is available at
www.bios.unc.edu/∼qaqish/software.
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Appendix

Proof. The fact that matrix A = λD + (1 − 2λ)FTF is
positive definite for all λ ∈ (0, 1).

We show that tTAt > 0 for any n × 1 vector t 6= 0. Write

tTAt =

m
∑

i=1

ρit
T
[

λDi + (1 − 2λ)fif
T
i

]

t

= λ

m
∑

i=1

ρit
T

[

Di − fif
T
i +

1 − λ

λ
fif

T
i

]

t

= λ

m
∑

i=1

ρi

[

tT
{

Di − fif
T
i

}

t +
1 − λ

λ

(

tTfi
)2

]

.

Now, Di − fif
T
i is an n × n positive semidefinite multinomial

covariance matrix of rank n − 1 and tT(Di − fif
T
i )t = 0 only

if t is a multiple of a vector of all ones. But for such t, the
term (tTfi )

2 is strictly positive. Thus, tTAt > 0 for any t 6=
0.


