Session 4: Developing New Therapeutics

Sharpless, Roberts (Duncan presentation unavailable)

May 25, 2011
Overview

Ned Sharpless

May 25, 2011
Therapeutics Theme Team

- **Target Identification and Validation**
 - Structural Biology
 - RNAi Screening
 - Proteomics

- **Drug delivery innovation**
 - Nanoparticles
 - Theranostics
 - Novel delivery systems

- **Novel drug discovery**
 - Small molecules
 - High Throughput Screening
 - Computational Approaches
 - Medicinal Chemistry

- **Preclinical Cancer Models**
 - Predict efficacy
 - Test UNC compounds
 - Analyze PK/PD

- **Human clinical trials**

- **CCNE**

- **Pharm/ TOND² / IPIT**

- **CICBDD**

- **MP1U**
Effective use of PI3K and MEK inhibitors to treat Ras mutant and non-mutant cancer

Patrick Roberts, PharmD, PhD
5/25/2011
MP1U House Rules:

- Credential the GEM model
- Primary Endpoints: 21 day response and survival
- “Success” requires tumor regression and prolonged survival
- Routine PK and/or PD
- Use large cohorts (n>15)
- Test old drugs
- Get best new drugs any way you can.
TRIA Melanoma Model

(Tyr-HRas\(^{\text{G}12\text{V}}\) \(\text{Ink4a/Arf}^{\text{-/-}}\))

- Genetics faithful to the human disease (Ras activation and \(\text{Ink4a/Arf} \text{ loss}\))

- Simple genetics assures large colonies of tumor-bearing mice with minimal genotyping.

- Although B-Raf mutations are more common, we choose Ras mutant model given the importance of this target in a wide spectrum of cancers, as well as the difficulty of drugging Ras as opposed to kinases like Raf.
TRIA Melanoma Model is Intrinsically Resistant to Standard Therapy
TRIA Model Recapitulates Reported Human Response Rates

<table>
<thead>
<tr>
<th>Drug</th>
<th>Mean day 0 tumor volume (mm³)</th>
<th>Mean day 21 tumor volume (mm³)</th>
<th>Response Rate by RECIST at 21 Days (CR+PR+SD)</th>
<th>Reported Human response rates for melanoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>83</td>
<td>322</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>Carboplatin</td>
<td>89</td>
<td>217</td>
<td>21%</td>
<td>14-23%</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>62</td>
<td>182</td>
<td>21%</td>
<td>14-18%</td>
</tr>
<tr>
<td>Carboplatin/Paclitaxel</td>
<td>41</td>
<td>97</td>
<td>38%</td>
<td>19-47%</td>
</tr>
<tr>
<td>Temozolomide</td>
<td>88</td>
<td>266</td>
<td>10%</td>
<td>15% (10-17%)</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>63</td>
<td>115</td>
<td>32%</td>
<td>33%</td>
</tr>
</tbody>
</table>
Simplified Ras Signaling Pathway

RTK (EGFR, KIT, MET) → RAS → B-RAF

Mutated in 30% of all human cancer

PTEN → PI3K

BEZ235

AKT

MEK → ERK

AZD6244
Dual MEK and PI3K Inhibition Elicits TRIA Tumor Regression

Day 21 Percent Change in Tumor Volume (%)
Promising Results!

<table>
<thead>
<tr>
<th>Drug</th>
<th>Mean day 0 tumor volume (mm³)</th>
<th>Mean day 21 tumor volume (mm³)</th>
<th>Response Rate by RECIST at 21 Days (CR+PR+SD)</th>
<th>Reported Human response rates for melanoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>83</td>
<td>322</td>
<td>0%</td>
<td>0</td>
</tr>
<tr>
<td>Carboplatin</td>
<td>89</td>
<td>217</td>
<td>21%</td>
<td>14-23%</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>62</td>
<td>182</td>
<td>21%</td>
<td>14-18%</td>
</tr>
<tr>
<td>Carboplatin/Paclitaxel</td>
<td>41</td>
<td>97</td>
<td>38%</td>
<td>19-47%</td>
</tr>
<tr>
<td>Temozolomide</td>
<td>88</td>
<td>266</td>
<td>10%</td>
<td>15% (10-17%)</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>63</td>
<td>115</td>
<td>32%</td>
<td>33%</td>
</tr>
<tr>
<td>AZD6244/BEZ235</td>
<td>57</td>
<td>82</td>
<td>56%</td>
<td>???</td>
</tr>
</tbody>
</table>
Day 21 Response Correlates with Increased Survival

<table>
<thead>
<tr>
<th>Median Survival (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
</tr>
<tr>
<td>21</td>
</tr>
</tbody>
</table>
C3-TAg
Basal-like Breast Cancer Model

Expresses SV40 large T antigen shown to inactivate both p53 and RB. Shown to have frequent K-Ras amplification and infrequent Ras mutations.
MMTV-\(c\)-\textit{neu}

Her2 Positive Breast Cancer Model

Expresses \(c\)-\textit{neu} (the mouse ortholog of human HER2).
T11
Claudin-low Breast Cancer Model

An orthotopic P53 null Breast Cancer model which has a similar gene expression profile to the human claudin-low breast cancer subtype.
Summary

- GEMM testing at UNC is highly advanced
- We have identified dual MEK/PI3K inhibition as a promising treatment approach for Ras-mutant and non-mutant cancer.
- We have initiated industry collaborations to test other MEK and PI3K inhibitors with varying isoform selectivity.
- We are always looking for new collaborators!
THANK YOU!!

- David Darr
- Jerry Usary
- Patrick Dillon
- Kat Bendt
- Kelly Clark
- Jamie Jordan
- Lorraine Balletta
- Austin Combest
- Suzan Hanna
- Norman Sharpless
- Chuck Perou
- Bill Zamboni